CG152 CW3 Mini-Micro Project

Robert Meerman (0219795) & Daniel Jones (0120478)

4Summary

4Points of Interest

4Intended Audience

6Introduction

6Abstract

6Authors experience and expertise

7Division of Labour

8Preliminary Design

8Technical Breakdown of desired end-product

9Data flow

10Hardware Layout / Circuit Design

13Implementation

13Essential Hardware Constructing and Testing

13Address Decoder

13Digital to Analogue Converters (DACs)

14Analogue to Digital Converters (ADCs) & Buffer

14Essential Software Writing and Testing

14Input Feedback

15Listing 3: ADC to DAC

15Testing

16Listing 4: Input Scaling

16Paddle Display

16Listing 5: Paddle Display

17Testing

17Listing 6: Paddle Display and Capping

17Player Two

18Listing 7: Player Two

18Testing

19Court Markings

20Listing 8: Court Markings

20Pre-processor Constants

21Listing 9: Constants

21Ball Motion

22Listing 10: Ball Motion

22Collision Detection & Scoring

24Listing 11: Collision Detection

25Listing 12: Primitive Score Display

25Hardware / General Enhancements

26Z-Trigger Fiasco

27Game-playability Tweaks / Frills

28Software Enhancements

28Encapsulation

29Listing 13: Struct creation and instantiation

29Randomisation

30Listing 14: PRNG

30Optimisation

307-Segment Score Display

317-segment Layout

31Final Gameplay Modifications

32Appendices

32Code

32Listing 1: DAC Vector Drawing

33Listing 2: ADC Feedback

34FINAL CODE (FULL) LISTING

41Circuits

41Component Details

41Patchboard

42SWET bus

42Address Decoder

43DAC / ADC

4474LS20 Dual 4-input NAND gates

4474LS574 Octal D-type edge-triggered Latch

4574LS245 Octal bus transceivers with 3-state outputs

4574LS154 4 to 16 line decoder

46Reference for Maintenance (Pin-outs, hardware address lists etc)

46Controller Info

46DAC / ADC

4774LS20 Dual 4-input NAND gates

4774LS574 Octal D-type edge-triggered Latch

4774LS245 Octal bus transceivers with 3-state outputs

4874LS154 4 to 16 line decoder

Summary

Point of Interest
This report outlines the process and considerations in designing, implementing and testing a simple games console which is capable of playing Pong
, and is intended as an easy-to-grasp example of the following:
· Creating and programming a system which uses multiple devices for both input and output.
· Use of a buffer and an address decoder to implement tri-state logic (1, 0 or disconnected).

· Analogue-to-Digital voltage conversion and measuring in a real-time system.

· Digital-to-Analogue voltage production, to drive an oscilloscope in “X-Y mode”

· Implementation of a shared bus, between a CPU microprocessor, 2x Digital-to-Analogue Converters (DACs) and 2x Analogue-to-Digital Converters (ADCs)

It should be mentioned that this report does not have any material related to interrupts, Interrupt Requests (IRQs) or Versatile Interface Adaptors (VIAs).
Intended Audience

This report is intended as a detailed reference for 1st Year Undergraduates on a Computer Organisation and Architecture course, but is suitable for anyone who is able to read to and write from a bus – in the author’s case this was achieved through a SWET
 board, provided by the course organisers.

[image: image1.jpg]

Above is a photo of Pong in action, on the left and right you can see the paddles, at the top and bottom are the screen borders which the ball bounces off. The ball is the streak in the more central portion of the screen; the line appearance is due to trails left by the ball’s movement. The pattern at the top is a 7-segment display for the scores.

Introduction

Abstract
The challenge set out to us was to recreate the retro-game Pong1​ using a SWET2 board, and the hardware available to us in the laboratory.

The game is much like Ping Pong, only without a net. Two players have a paddle each, and use it to bounce a ball back and forth. If a player allows the ball past their paddle the other player scores a point (much like when a goal keeper fails to stop the ball in a game of football (soccer)). The paddles are situated at the left and right of the screen, and the ball can bounce off the top and bottom.
[image: image22.jpg]

The capabilities of the SWET board allow us to read and write at least 16bits on a bus which is connected to a patchboard. The patchboard contains socket rails, into which standard semiconductor chip modules can be plugged in; each pin of the module it connected to a vertical pin, unto which flying cables can be attached. This effectively allows us to easily construct circuits which use multiple modules by attaching coloured cables. (For diagram of the patchboard please see appendix “Component Details, Patchboard” on page 41.)
Pictured left is our construction board during a late stage of this projects development. At the bottom left the connection to a ribbon cable can just be seen, we wired up blue and purple cables to the ribbon, and hence the CPU on the SWET board.
We were also provided (in module form) a buffer, a latch, an 4 to 16 line decoder, an oscilloscope, two Analogue-to-Digital Converters (ADCs) and two Digital-to-Analogue Converters (DACs); and a bundle of brightly coloured cables.
Authors experience and expertise
Daniel Jones has several years of software development experience, primarily with high-level languages including C, Java and Perl, and hence undertook the core of the programming work. Daniel is very skilled at quickly analysing a logic problem and writing a working solution without the need to first prepare any preliminaries. Among other things Daniel was the voice of reason during the project who was always thinking of time restraints and prioritising targets.
Robert Meerman has informal experience in building intermediate-complexity circuits from his hobby of electronics, example projects include creating a burglar alarm for his room, which utilised patterns of tin-foil glued to card to make entry and admin (reset-capable) cards, when he was 10. More recently his expertise has turned to games programming on the Nintendo™ “Gameboy Advance”™ system (a hand-held gaming machine which has hardware acceleration for 2D tile and sprite graphics), and as such was the team’s expert on hardware programming. Robert also has an extremely systematic and exhaustive approach to all problems, which made him perfect for the back-seat driver’s job of supervising and criticising code produced by Daniel Jones.
Division of Labour
Daniel Jones was pioneer who boldly ventured into the often-confusing and always mysterious problems of experimenting and debugging hardware that we initially did not understand clearly. Daniel designed the hardware subsystem, was charged with the software development and ultimately dreamt up the game engine itself.
Daniel wrote this reports sections related to software (Essential Software Writing and Testing, Software Enhancements and Appendices: Code), Robert wrote the remainder of this report as it was included in his responsibility of documenting the project.
Robert Meerman was the behind-the-scenes person. He was responsible for documenting the design stage, and for keeping notes on problems encountered during the implementation stage. Robert also spent much of his time giving a second opinion to Daniel Jones when debugging the hardware and code, or when the hardware was not working.
Preliminary Design

Technical Breakdown of desired end-product
When playing the game, controllers are used by each player to control the paddles on screen. When the paddle position is adjusted on the controller the resistance of the rheostat changes and hence the voltage across it can be made to change if connected to our console.

Therefore we will require two input devices, in our case the voltage across each controller is the input, and we will need to convert this to a digital number that can be read by the CPU on the SWET.

The paddles need to be displayed and updated on a screen, we will use the oscilloscope in “X-Y mode” which is a coordinate mode, and effectively renders the oscilloscope into a Vector graphic display. The X and Y coordinates need to be fed into the oscilloscope as two voltages on separate cables. For this we will need to convert a digital number from the CPU into an analogue signal; we shall use our two Analogue-to-Digital Converters to do this.

So far we will need four separate entities for the software to address, as each entity will need 8 bits of the (common) bus which is connected to the CPU. We will attach a 4-to-16 line decoder to 4 bits of the remaining 8 of the bus (the bus from the SWET is 20 bits in total - according to the documentation, 16 bits are intended for addresses, and the other 8 bits are intended for data, please see Appendix “Component Details, SWET bus” on page 42 for detailed diagrams and pin assignments).

[image: image2.wmf]SWET

DAC

DAC

ADC

ADC

X

Y

P1

P2

ADDRESS

DECODER

4

ENABLE LINES

8 BIT DATA BUS

Above is a neat copy of the diagram we sketched at this stage of our planning. As you can see it is not detailed enough to construct the console, but it does show the basic layout of components and how they will interact with one another. It is worth noting that this abstraction does not actually include a bus, as the red line does not form a loop.
Data flow

The abstract data flow for this project was surprisingly simple, because the application was to entertain humans (who are unable to perceive differences of milliseconds), the flow of data could be done using wasteful methods such as polling for input. Had speed been paramount we would have looked into parallel computing and interrupts.

To game engine is simple in concept: read some input from the controllers, this input, in the form of a voltage reading, will directly correlate to the position of a particular paddle. This input is processed and the paddles moved. The ball’s movement is incremented a step (the direction is deduced from previous direction and some collision detection), and then all these elements are displayed on the screen; and the cycle starts again.

[image: image3.wmf]Process Input

Incriment ball position

Check for collisions

Draw Screen

Breaking down this abstract we get the following:

[image: image4.wmf]Trigger ^RD on ADC_1

Repeatedly check for ^BUSY until no longer true

Trigger ^WR on ADC_1

Copy bus contents into Player_1_paddle_position

Trigger ^RD on ADC_2

Repeatedly check for ^BUSY until no longer true

Trigger ^WR on ADC_2

Copy bus contents into Player_2_paddle_position

Check ball movement for collisions and set new direction as required

Move ball

Write X coordinate to DAC_1

Write Y coordinate to DAC_2

Repeat until all elements are drawn

The top two boxes refer to the input stages – the Analogue-to-Digital Converters have three lines which we need to use in order to extract a digital voltage reading. The ^RD (Not READ) line is triggered when it is set to logical 0, once triggered the ADC will go through the process of deducing the voltage, which takes a number of CPU cycles - during this time the ^BUSY is set (from logical 1) to 0 and this indicates to us when we can extract the voltage reading. When ^BUSY is set to high again, we can trigger ^WR (Not WRITE) which will write the digital reading to the system bus, where we will read it into a CPU register.
The lowest box is the output stage, and this has been greatly simplified. The output of both X and Y have been coupled together because the time taken to set the Analogue output is small enough that polling is not necessary. In order to draw a line, every coordinate along the line is plotted until the end of the line is reached. Were we to plot the beginning and end points of a line the cathode ray would move across the screen too fast to leave a noticeable impression.

Hardware Layout / Circuit Design

Working from the above description of data flow, it is apparent that the ADCs and DACs can share the same bus as no two are used simultaneously. Below is the layout we settled on before proceeding to working out details at the individual pin level.

[image: image5.wmf]DAC

X

DAC

Y

BUFFER

P1

ADC

P2

ADC

RD

WR

ADDRESS

DECODER

SWET

LATCH

RD

WR

4

Z

8

The red line is our 8-bit data bus, which is shared with all components. The 4-bit connected to the box marked “Address Decoder” were the four least significant bits of the SWET’s external address lines. These 4-bits will be decoded and one of the address decoder’s 16 outputs will be activated (active low) – this is represented by the blue so called “enable lines”.
The DACs each have one enable line and the common bus; when the enable line is set active the DAC will read the bus and set the analogue voltage accordingly. The DACs will output the X and Y co-ordinates to the vector graphics display.

Z has not been mentioned before, it is an optional signal which allows us to turn the cathode ray beam in the vector graphics display on or off manually, which should allow us to create clearer picture by removing trace-line from the end of one screen-element and the beginning of the next. The latch is in place so that we can use the bus freely in-between setting the state of Z.
P1 and P2 are analogue voltages from the two controllers. The ADC has two enable lines (^RD = Not READ, and ^WR = Not WRITE) and an output control line (^BUSY = Not BUSY) which is connected to the buffer. Please note that this is not labelled on the diagram. The buffer is used to create “tri-state logic”, allowing us to effectively disconnect the ^BUSY line from the bus when we are not using it. It is important to understand that even while ^BUSY is in a false state, there is a logical state on the line, and if this were connected to the bus it may interfere with its data.
Next we mapped out the enable lines from the address decoder and settled on the following:

[image: image6.wmf]ADC ADC BUFFER DAC DAC LATCH

P1

P2

^BUSY x2

X

Y

Z

^RD

0

^WR

1

^OE

4

^ENABLE

5

^ENABLE

6

^OE

7

^RD

2

^WR

3

0x01 = ^BUSY ADC_1

0x02 = ^BUSY ADC_2

0x01 = Z

The top line is the purpose description of the line below, the large capital letters represent the hardware components, the small line beneath this contains the enable line names (see legend below). The line of numbers correlate to the enable lines above them – the numbers represent the digital value which addresses that pin on the decoder (starting at 0 and finishing at F). The text below arrows maps the data bus bits to the control/enable line.

Legend:

^RD

Not READ

^WR

Not WRITE

^OE

Not OUTPUT ENABLE

^ENABLE
Not ENABLE

(Note that ‘Not’ indicates that these are active low, meaning they are triggered by a logic 0)

Implementation

Essential Hardware Constructing and Testing

Before any code can be written, the hardware needs to be setup and tested to ensure the designated addresses and processes of input/output work as expected. Only once this is done can we start to pull all the features together (see “Essential Software Writing and Testing” on page 14).

Address Decoder

The 4-to-16 line decoder was wired up to the 4 least significant bits of the SWET’s address lines and also to the PBE, VMA and E control lines of the SWET (see “Component Details, Address Decoder” on page 42). A small program was written which would simple put 0x1 on the address lines, which should set a logical low on pin 1 of decoder module; the result was tested with the probe of an oscilloscope. All pins were checked to ensure that only pin 1 was logical low and all others were logical high as expected. The test program was modified to systematically set low to each pin.

We encountered the largest of our problems at this stage, the address decoder was changing the active pin selection randomly, even when no program was loaded into the SWET. This baffled us both for sometime, probing with the oscilloscope revealed an astonishing amount of noise on the address lines. The SWET and the patchboard both have their own power supplies, and as such their electrical ground was not common, grounding the SWET’s bus solved this problem.
Digital to Analogue Converters (DACs)

We wired up the first of the DACs (see “Component Details, DAC / ADC” on page 43) to use the 8-bit data bus and enable line 5 of the address decoder. Our test program would output a sequential number list to address 0xe5000 (NB: All addresses are 0xeX000, where X is the pin number). This would sequentially plot a horizontal line on our vector graphics display.

We wired up an additional DAC and shared the data bus, and set this one to use enable line 6. We modified the test program to send the sequence to address 0xe6000.

Finally we modified the program to write to each DAC in turn to create a diagonal line (see appendix “Code, DAC Vector Drawing” on page 32).
At first the top line did not appear, after some experimentation we found that the top of the screen was not the voltage created by the value 0xFF as expected, but of 0xA0. We later used this value as our screen height.
Analogue to Digital Converters (ADCs) & Buffer
We wired up one of the ADCs (see “Component Details, DAC / ADC” on page 43) to the system bus, connected ^RD and ^WR to addresses 0xe0000 and 0xe1000 respectively, and connected ^BUSY to 0x01 of the bus. Our test program would read from address 0xe0000 (triggering the ‘READ’ function of the ADC) and then would repeatedly poll the bus to check the status of ^BUSY, once ^BUSY indicated that the ADC was not busy, we would read 0xe1000 which would simultaneously trigger the ^WR of the ADC and copy the bus contents into a software variable; we printed the variable to the debugging console on our control PC.
The results were less than pleasant; the console printed random number that definitely did not coincide with our movements on the controller’s variable resistor. We checked the variable resistor with the oscilloscope and confirmed it was working as expected. After researching the problem we became aware of the interference that the ^BUSY line was causing to the bus, and installed a buffer in-between the ^BUSY of the ADC and bit 0 of the bus. The ^BUSY line was connected to pin 1 (0x00) of the buffer, and the buffer’s enable line was connected to enable line 4 as per are original plans, which in their wisdom had been correct all along.

Our test program would trigger ^RD, poll address 0xe4000 (which would simultaneously enable the buffer output and also obtain the pin statuses), trigger ^WR and print this value on the debugging console (see appendix “Code, ADC Feedback” on page 33).

The second ADC was connected to addresses 0xe2000 and 0xe3000 for ^RD and ^WR respectively. The ^BUSY was connected to pin 2 (0x01) of the buffer.

The program was modified to apply to the second ADC, this worked fine and so we further modified the program to copy the values of ADC_1 and ADC_2 to DAC_1 and DAC_2 respectively. When this was tested the effect was like using a digital etch-a-sketch, that is to say it worked exactly as hoped.

We encountered some other problem whilst connecting the ADCs, at one point we had forgotten to turn the power supply of the patchboard on, but because both the SWET and the vector graphics display were powered, we failed to notice for some minutes. There was also confusion over which pin was analogue in on the ADC, as the reference diagram showed 20 pins, when in actual fact there were only 19 pins on the hardware. We also encountered a problem with the buffer, which we found to be because the direction pin had not been connected.
Essential Software Writing and Testing

Input Feedback

Having completed and tested the hardware interface, we were now able to commence software development. We already the skeletal fragment of code used to test the DAC (see appendix “Code, Listing 1 DAC Vector Drawing” on page 32) and that used for the ADC (see appendix “Code, Listing 2 ADC Feedback” on page 33), and we decided to extend these to create a basic testbed that would convert the user input into visual feedback.

NOTE: Code listings presented henceforth will frequently omit headers (such as #define pre-processor statements), which can be read implicitly from prior listings. Furthermore, brief fragments of code will be used to illustrate a principle or concept, which will be integrated with the remainder of the codebase towards the end of this section.

Listing 3: ADC to DAC

int main ()

{

*DACX = 1;

*DACY = 1;

while (TRUE)

{

byte i;

*ADC_WR;

while ((*BUFFER & 0x01) == 0) ;

i = *ADC_RD;

*DACY = i;

}

}

The above code displayed a single spot at a point corresponding to the user input, moving vertically with the rotation of the control unit.

Testing

Listing 3 was tested by moving the input device to extremes, i.e. maximum and minimum resistance. We found that low input values displayed the dot at a suitable position, in close proximity to the bottom of the display; however, high values caused the spot to move beyond the top of the display.

For the purpose of the game, we obviously desired the paddle to not be able to move beyond the top of the screen. One solution to this problem would be to simply cap its movement beyond a certain value. However, the spot moved off the screen after a relatively small increase in the input value, and we wanted to make use of as much of the input range as possible for maximum sensitivity. We decided that it would be logical to make sense to instead scale the input.

The first problem that we encountered in attempting to do so was the fact that the SWET microprocessor does not support floating point values; instead, integer division would have to be used. Some experimentation showed that this isn’t as much of a shortfall as it first seemed, as statements such as

i = *ADC_RD * 5 / 8;

could still be used for greater precision.

As it turned out, the most efficient scaling was a simple division by two. Although this still went slightly beyond the display range, it was more than satisfactory for the purpose, and only required a single operation to calculate. We capped the remainder of the input values, resulting in Listing 4.
Listing 4: Input Scaling

*ADC_WR;

while ((*BUFFER & 0x01) == 0) ;

i = *ADC_RD / 2;

if (i > 0xa0)

i = 0xa0;

This code allows the user to move a spot from the very top to the bottom of the display, and has a very small range of unused input values.

Paddle Display

The next step was to transform the moving dot into a slightly more credible paddle analogy; rather than just displaying a single spot, we required a vertical line of pixels beginning at the ADC’s input value.

Obviously, the problem would require a control loop over a range of values from *ADC_RD to *ADC_RD + paddle_size. We weighed up a few methods of implementing this loop.

Listing 5: Paddle Display

/* 0: multiple ADC reads */

for (i = *ADC_RD; i < *ADC_RD + 16; i++)

*DACY = i;

/* 1: ADC value to variable */

byte pos = *ADC_RD;

for (i = pos; i < pos + 16; i++)

*DACY = i;

/* 2: temporary loop variable */

i = *ADC_RD;

for (j = 0; j < 16; j++)

*DACY = i + j;

After some deliberation, we decided that method #0 would be unreliable as we were unsure as to the viability of multiple ADC reads, and #2 would require an additional calculation on each loop iteration. Method #1 – assigning the input value to a ‘position’ variable and testing the loop variable against this each time – seemed the best trade-off of efficiency and memory usage.

Testing

Once again, we tested the code by using extreme input values. By this time, we had anticipated the outcome: since we were only testing the input origin (i.e., the very bottom point of the paddle), the top of the paddle disappeared beyond the top of the display. This had to be factored into our capping algorithm:

Listing 6: Paddle Display and Capping

*ADC_WR;

while ((*BUFFER & 0x01) == 0) ;

pos = *ADC_RD / 2;

if (pos > (0xa0 - 16))

pos = 0xa0 - 16;

for (i = pos; i < pos + 16; i++)

*DACY = i;

Player Two

Now that we had one paddle displaying satisfactorily, we decided to go ahead and implement the theoretically trivial Player Two: a direct copy of the present input and output structure, but with the second ADC and a new paddle displayed on the opposite side of the display.

At this stage, we realised that, for future purposes such as collision detection, it would make sense to store player positions within variables, p1_y and p2_y.

The resultant code is displayed in Listing 7.

Listing 7: Player Two

/* ADC memory locations */

#define ADC1_RD ((byte *) 0xe0000)

#define ADC1_WR ((byte *) 0xe1000)

#define ADC2_RD ((byte *) 0xe2000)

#define ADC2_WR ((byte *) 0xe3000)

#define BUFFER ((byte *) 0xe4000)

int main ()

{

byte i, p1_y, p2_y;

while (TRUE)

{

/* Player 1: left side of display */

*DACX = 0;

*ADC1_WR;

while ((*BUFFER & 0x01) == 0) ;

p1_y = *ADC1_RD / 2;

if (p1_y > (0xa0 - 16))

p1_y = 0xa0 - 16;

for (i = p1_y; i < p1_y + 16; i++)

*DACY = i;

/* Player 2: right side */

*DACX = 0xff;

*ADC2_WR;

while ((*BUFFER & 0x01) == 0) ;

p2_y = *ADC2_RD / 2;

if (p2_y > (0xa0 - 16))

p2_y = 0xa0 - 16;

for (i = p2_y; i < p2_y + 16; i++)

*DACY = i;

}

}

Testing

The above code simply did not work, and we could not understand why until, upon extensive scrutiny, we realised that the wrong bit of the buffer was being masked when using the second ADC:

while ((*BUFFER & 0x01) == 0) ;

The second ADC’s BUSY signal was connected to the buffer’s second input pin, so we changed the above to 0x02 and the code executed correctly, with both paddles working as expected.

Court Markings

At this point, we decided to incorporate the classic Pong court markings into the visual display: two screen-length horizontal lines, at the top and bottom of the display, representing the boundaries of the court (at which the ball should bounce back vertically).

Consider the method used to display these lines.

· Set DAC Y ordinate to 0

· Loop X ordinate from 0 to screen width

· Set DAC Y ordinate to screen height

· Loop X ordinate from 0 to screen width

This algorithm seems innocuous, and, for most output devices, should be perfectly adequate. However, since we were using a Cathode Ray Tube as our vector display a problem presented itself: During DAC voltage tranisitions the output of the DAC is undefined, which suggests that when the new voltage is applied some “settling” will occur. On a CRT display this is perceived as noise.
Getting ahead of ourselves slightly, we thought it best to draw the screen in such a way as to minimise the number of directions changes, the thinking being that if we enter a Vertical line drawing method from the side, the settling will create an element of horizontal noise as the beam comes from the side to the beginning of the line. Were we to end the previous line vertically above of below the beginning of the current line, we would only have noise in a vertical direction; because the X direction would not need to be adjusted.

Admittedly we did doubt the significance of this detail ourselves, but we saw no harm in using such an algorithm, and among other things it was a more efficient way of drawing the screen as it minimised DAC calls.

Listing 8: Court Markings

byte i;

*DACX = 0x00;

*DACY = 0x00;

/* Draw bottom line, right to left */

for (x = 0; x < CRT_WIDTH; x++) *DACX = x;

/* From top-of-screen calculations, earlier */

*DACY = 0xa0;

/* Draw top line, left to right */

for (; x > 0x00; x--) *DACX = x;

Pre-processor Constants

Inspecting our existing code, we realised that there was much room for improvement as far as hard-coding constants is concerned. Repeatedly, we use statements such as:

if (p1_y > (0xa0 - 16))

which includes two constant values: the screen height (0xa0) and the height of the paddle (16). If either of these values were to change, we would have to scour the code for every occurrence, and replace each by hand.

The usual solution for such issues is to use pre-processor constants in place of any unchanging values, just as we have for ADC1_RD et al. Rather than using global variables, which would be parsed at run-time, constants are optimised out at compile-time, aiding efficiency of execution. See Listing 9 for the new #define statements.

Listing 9: Constants

/* useful constants */

#define TRUE

1

#define FALSE

0

/* paddle height, in units */

#define PADDLE_HEIGHT
24

/* maximum CRT X and Y values */

#define CRT_WIDTH

0xFF

#define CRT_HEIGHT

0xA0

#define ADC1_RD
((byte *) 0xe0000)

#define ADC1_WR
((byte *) 0xe1000)

#define ADC2_RD
((byte *) 0xe2000)

#define ADC2_WR
((byte *) 0xe3000)

#define BUFFER
((byte *) 0xe4000)

#define DACX

((byte *) 0xe5000)

#define DACY

((byte *) 0xe6000)

Ball Motion

Some consideration led us to determine that the ball would require 4 properties:

· X position

· Y position

· X speed

· Y speed

The X and Y positions will simply correspond to the pixel co-ordinates of the current location of the ball, and should be initialised to the centre of the court.

The ‘speed’ variables indicate how many units in each axis the ball is to move per execution cycle of the program’s main loop. In keeping with the traditional version of the game, we initially decided to only consider 6 directional movement:

These correspond to the following:

x_speed ({ 1, -1 }

y_speed ({ 1, 0, -1 }

The single-pixel visual representation of the ball was deemed adequate for our purposes, and so we went ahead and implemented the movement code, with the ball initially moving up and right.

Listing 10: Ball Motion

byte ball_x = CRT_WIDTH / 2,

 ball_y = CRT_HEIGHT / 2,

 ball_speed_x = 1,

 ball_speed_y = 1;

while (TRUE)

{

ball_x += ball_speed_x;

ball_y += ball_speed_y;

 *DACX = ball_x;

 *DACY = ball_y;

}

Collision Detection & Scoring

Finally, all of the software components were in place that would allow us to implement the gameplay itself. The features now required were as follows:

· Ball and court boundary collision (vertical bounce)

· Ball and paddle collision (horizontal bounce)

· “Scoring”: ball missed by player

With the current system, the concept of a collision is very simple indeed. Collision with the ball and court boundary is merely a case of testing whether the ball’s vertical position lies on the extremities of the display width and height; if so, its Y-speed is to be reversed (that is, subtracted from zero).

Ball/paddle collision is not so simple, as it relies on the position of both the ball and the paddle in question, plus the paddle’s size.

If the ball reaches the left or right hand side of the screen, and it does not collided with a paddle at that point, then the opposing player has scored a point and the ball should be reset to the centre of the screen. Since this requires two separate cases – one for each player – and the ball collision/reset code will be used in both cases, we created subroutines for each purpose to avoid code re-use.

The above features were implemented as shown in Listing 11.

Listing 11: Collision Detection

int main ()

{

/*

 * (..ball and paddle movement code..)

 *

 */

/* bounce ball vertically off court boundaries */

if ((ball_y <= 0x00) || (ball_y >= CRT_HEIGHT))

ball_speed_y = 0 – ball_speed_y;

if (ball_x <= 0x02)

{

if ((ball_y >= p1_y) &&

(ball_y <= p1_y + PADDLE_HEIGHT))

{

/* collided with p1 */

collide();

} else {

reset_ball();

p2_score++;

}

}

else if (ball_x >= (CRT_WIDTH - 2))

{

if ((ball_y >= p2_y) &&

(ball_y <= p2_y + PADDLE_HEIGHT))

{

collide();

} else {

reset_ball();

p1_score++;

}

}

}

void collide ()

{

ball_x = 0 – ball_x;

}

void reset_ball ()

{

ball_x = CRT_WIDTH / 2;

ball_y = CRT_HEIGHT / 2;

}

The last aspect of the game that should be implemented to make it faithful to classic versions is the score display. Before worrying about an advanced display method such as real numeric characters, we decided to create a simpler representational method – two lines of pixels, with lengths proportional to each player’s score.

Listing 12: Primitive Score Display

draw_scores ()

{

byte i;

*DACY = CRT_HEIGHT - 1;

for (i = 0; i < p1_score; i++)

*DACX = 2 * i;

for (i = 0; i < p2_score; i++)

*DACX = CRT_WIDTH - (2 * i);

}

Hardware / General Enhancements
Once we were happy with our very basic, un-tweaked game we set about tidying the hardware side of things, we bundled cables and moved all external connection from individual pins on chip modules to the easier-to-access commons around the edges of the patchboard.

[image: image7.wmf]USED INTERNALLY (ADC_1 ^BUSY)

Y ANALOGUE OUT

GND

P2 PADDLE

Z BLANKING OUT

X ANALOGUE OUT

GND

P1 PADDLE

Now that the game was working to acceptable degree we found we had some time to implement some ‘frills’ in our project.
Z-Trigger Fiasco

Our designs had included a latch connected to Z (the intensity input for the oscilloscope), but due to a number of problems our time was limited in such a way that we thought it best to leave this until later.

At this time we were experiencing slight anomalies in our game display.

[image: image8.wmf]DESIRED

ACTUAL

(Exaggerated)

The line of dots was our scoring system, the top and bottom horizontal lines were our walls, the vertical lines the paddles and the dot was the ball.

On the left is what we desired, and were quite certain we had programmed, however we saw a display which resembled the diagram on the right. The curvature of the lines was both undesirable and inexplicable. It is interesting that the top line did not just curve towards its next element to be drawn (the left paddle) but also deviated upwards, this is even harder to understand because the score display (the lines of dots) came out horizontally without any problems.
We did not fully understand the curvature of the top line, but the curvature of the right paddle was easy to comprehend, after the paddle is drawn the beam is diverted to the next element to be drawn (the scores) and it is not turned off during this time, so some tracing is to be expected. We are still uncertain as to why it is curved however.

Implementing an intensity feature would allow us to turn the drawing beam off during periods between the end of drawing one element and moving the beam to the beginning of the next; and we hoped this would correct our display.

Initially we connected the Z-input of our display directly to the address decoder. On triggering Z the vector display would turn off the beam for 20milliseconds, unless instructed otherwise during that time. The Z-trigger of our display was triggered by a low to high logical transition – unfortunately our address decoder was active low, and hence would only produce such a transition if the Z-trigger’s address was made active, and then non-active. Despite this fact, there should have been some noticeable change in our display, as we had added many lines of code which would address the Z-trigger in-between addressing other components. We did not notice such a change.
We decided to connect the Z-trigger to a manual switch and see if rapidly pressing it would have any effect what-so-ever on our display. Pressing the switch would result in the display jerking downwards a few millimetres, and releasing it would jerk the screen up the same distance. We did not know what to make of it and thought implementing the Z-trigger correctly not only stood a good chance of solving our problem, but may also shed some light on all our confusion.

We implemented the Z-trigger through a latch as in our original plan, so addressing the latch would cause it to copy the bus and keep this state on our Z-trigger output. This should allow us to turn the beam on and off in-between doing other things (such as moving the beam to the beginning of the next screen element).

Ultimately we did not notice any difference in our screen and are unsure if we ever succeeded in getting the Z-trigger to work at all. However this is a moot point as our original problem was curvature, and not particularly “trace lines” in-between elements.
Game-playability Tweaks / Frills
While play-testing the game we dreamt up many way we could enhance the playability of our game, ranging from paddle-movement smoothing all the way to add power-up items, enemies and the inclusion of another’s talking clock project to read out “Game over” and similar fanciful ideas.
More details of the following can be found in the next section.

We did implement many of the simpler ideas, such as:

· Ball direction randomisation (on start) [needs: work on random factor, works be measuring paddle positions, perhaps distance from centre of paddle during last collision would prove to be more random]

· Ball speed doubled (replaced a +1 with a +2, but this caused many problems with collision detection and also caused overflow which would wrap the ball to the other side of the screen where it would often bounce off the back of the other player’s paddle)

· Score bars were good, but after a certain number of points they would overlap and become cumbersome, need to develop “10s and 100s” units never realised.

· Paddle growing and shrinking [probs: changing paddle length allowed paddle to be moved off the screen before causing an overflow at very top of the display which in turn caused game to hang, also collision detection needed to be updated to take variable lengths into account],

· HELLO title screen [probs: adding delay to hello did not keep hello on screen due to need for vector graphics to be refreshed.],
Software Enhancements

There were evidently a number of areas in which the operation of the program, and the program code itself, could be enhanced and improved drastically.

Encapsulation

Most glaring was the structure of the program; it uses a series of very similar global variables (ball_x, ball_y, ball_x_speed, …), which creates messy code, cluttered namespaces, and is bad practice. The fact that most of the variable space was consumed by properties of the ball and player led us to conclude that the optimal solution would be to encapsulate the data, using a mongrel object-orientation with C’s structs. This would also allow for further expansion with additional ‘object’ properties.

Logically, this calls for a two structures: ball, with properties:

· x

· y

· x_dir

· y_dir

and player, with properties:

· x (fixed, per instance)

· y

· score
There would, of course, be two instances of the ball object, and two of player.

The structures were created as shown in Listing 13.

Listing 13: Struct creation and instantiation

struct s_ball {

byte x;

byte y;

byte dir_x;

byte dir_y;

} ball;

/* instantiate object */

struct player {

byte x;

byte y;

byte score;

};

struct player p1;

struct player p2;

p1.y = p2.y = CRT_HEIGHT / 2;

p1.paddle_size = p2.paddle_size = PADDLE_HEIGHT;

p1.score = p2.score = 0;

/* define horizontal positioning for paddles */ p1.x = 0x00; p2.x = CRT_WIDTH;

Randomisation

The gameplay was somewhat lacking at this point; the ball would bounce off the paddles in an entirely predictable fashion, and the game quickly became repetitive. This is often solved by adding an element of chance to the game – in this case, the physics used by the bouncing action.

The method we selected was to generate a random number between –1 and +1 inclusive, add this to the current ball.y_dir, and reduce the final value if its absolute value is > 1. This has the net effect of potentially altering the direction of the ball by up to one angle of the 6 listed above.

The problem with the above solution, of course, is that the SWET system has no built in pseudo-random number generator, so we would have to write our own based on the facilities available to us.

The most popular way of doing so is to base the number generation on user input, which is inherently somewhat non-uniform. We opted to store a random seed in the ball structure, which would be summed with the combined positions of each paddle within every main cycle. This value would then be wrapped around the 8-bit value stored in the byte type, and we could treat two bits of this as an extremely crude pseudo-random number.

The implementation of this is shown below.

Listing 14: PRNG

/* Within the main loop:*/

ball.rnd += p1.y + p2.y;

/* ..and within collide(): */

ball->dir_y += (ball->rnd & 0x01) +

(ball->rnd & 0x02) - 1;

if (ball->dir_y > 1)

ball->dir_y = 1;

else if (ball->dir_y < -1)
ball->dir_y = -1;

Optimisation

Although the code was reasonably smooth, some optimisation techniques would not go amiss at this stage. We implemented two methods of smoothing out the gameplay:

Inline functions are simply prefixed with the inline keyword, and effectively request the compiler to replace the function call with the object code itself, eliminating the need for a machine-code long jump. They increase the size of the program – a property which isn’t of vital import in such a minor application – and can sometimes noticeably increase the efficiency.

Implementing inline functions did give a slight performance boost.

A faster Makefile is available for the SWET architecture which enables a double-speed processor. Using this to compile the program gave a significant increase in speed.

7-Segment Score Display

The classic Pong game used two single-digit 7 segment displays to convey each player’s score, and it was a logical progression for our implementation to do the same.

We began by implementing a single-character display subroutine, draw_figure(), which maps digits (1..9) and char values to their encoded 7-segment counterparts. Since a 7-segment character has 7 lines, each of which are either on or off, we decided on storing each representation in a byte variable, where each of the 7 least significant bits represented an individual segment, as follows:

7-segment Layout

0x40

 +--------+

 | |

0x10 | | 0x20

| 0x08 |

 +--------+

 | |

0x02 | | 0x04

| 0x01 |

 +--------+

The routine then tests each bit in turn (via a sequence of leftwards bit shifts) and displays any segments that are enabled, with a helper subroutine, draw_line().

For the full listing of these subroutines, please consult Appendix XXX.

Final Gameplay Modifications

As we had time to spare, we decided to make some final alterations to the gameplay system.

A paddle_size property was added to each player’s object, which overrides the default PADDLE_SIZE constant. This is incremented whenever the corresponding player concedes a point, theoretically evening up the gameplay by giving the losing player an advantage.

Finally, we increased the horizontal ball speed to 2, to make the gameplay slightly more frenetic and enjoyable.

Appendices

Code

Fast-MAKEFILE: /courses/cg152/lib/m68k-swet-coff/Makefile-swet-fast

Listing 1: DAC Vector Drawing

#include <saio.h>

/* define byte, useful for MC68008 memory locations */

typedef volatile unsigned char byte;

/* DAC address locations corresponding to CRO X/Y co-ords */

#define DACX
((byte *) 0xe5000)

#define DACY
((byte *) 0xe6000)

int main ()

{

byte i;

for (i = 0; i < 100; i++)

{

*DACX = i;

*DACY = i;

}

}
Listing 2: ADC Feedback

#include <saio.h>

/* define some useful constants */

#define TRUE

1

#define FALSE

0

/* define byte, useful for MC68008 memory locations */

typedef volatile unsigned char byte;

/* ADC memory location */

#define ADC_RD ((byte *) 0xe0000)

#define ADC_WR ((byte *) 0xe1000)

#define BUFFER ((byte *) 0xe4000)

int main ()

{

byte i;

while (TRUE)

{

/* dummy write, triggers conversion */

*ADC_WR;

/* wait for BUSY to clear */

while ((*BUFFER & 0x01) == 0) ;

/* read value and display at console */

i = *ADC_RD;

prf(“reading: %d\n”, i);

}

}

FINAL CODE (FULL) LISTING

/*

 * pong.c

 * Pong game, which runs on custom hardware produced for CG152 Coursework 3.

 */

/*

 *
Misc notes:

 *

This is designed to run on a SWET board equipped with a 68008 processor

 *

and a series of additional custom-configured microchips.

 *

 *

Primary features of this setup include two DACs to plot vector graphics

 *

on an oscilloscope and two ADCs to read input from our controllers.

 *

 *

*Z refers to the oscilloscope's manual trigger, which turns off the cathode

 *

ray for a period of up to 20ms. Although we are confident that our

 *

implementation of this was successful, it did not impart any noticeable

 *

improvement to the system's operation, and hence has been commented out.

 */

#include <saio.h>

/* define some useful constants */

#define TRUE

1

#define FALSE

0

/* initial paddle height, in units */

#define PADDLE_HEIGHT

24

/* maximum CRT X and Y values */

#define CRT_WIDTH

0xFF

#define CRT_HEIGHT

0xA0

/* dimensions of 7-segment score display */

#define NUM_HEIGHT

16

#define NUM_WIDTH

12

/* define byte, useful for MC68008 memory locations */

typedef volatile unsigned char byte;

/*

 * Address mapping for each component:

 *
ADC_RD
- ADC read lines

 *
ADC_WR
- ADC write lines

 *
BUFFER
- used for ADC BUSY signals

 *
DACX
- DAC used for CRO X positioning

 *
DACY
- DAC used for CRO Y positioning

 *
Z
- Z-trigger (now disused)

 */

#define ADC1_RD
((byte *) 0xe0000)

#define ADC1_WR ((byte *) 0xe1000)

#define ADC2_RD
((byte *) 0xe2000)

#define ADC2_WR ((byte *) 0xe3000)

#define BUFFER
((byte *) 0xe4000)

#define DACX
((byte *) 0xe5000)

#define DACY
((byte *) 0xe6000)

#define Z
((byte *) 0xe7000)

/* Mock object-orientation; neatens up the code by using encapsulation */

struct s_ball {

/*

 * Ball structure.

 * Properties include X/Y position, X/Y speed, and a random seed

 * as the SWET does not provide its own.

 */

byte x;

byte y;

byte dir_x;

byte dir_y;

byte rnd;

} ball;

struct player {

/*

 * Player structure.

 * Includes X/Y position, paddle size, and current score.

 */

byte x;

byte y;

byte paddle_size;

byte score;

};

/* subroutine prototypes, all inline for optimal speed */

inline collide

(struct s_ball *);

inline reset_ball

(struct s_ball *);

inline byte coll_detect (struct player, struct s_ball);

inline draw_ball

(byte, byte);

inline draw_lines

();

inline draw_scores

(struct player, struct player);

inline draw_paddle

(struct player);

inline delay

(int);

int main (void)

{

/* Initialise a few things so we know what's what */

*Z = 0x00;

*DACX = 0x00;

*DACY = 0x00;

/* Create player objects and initialise with sensible values */

struct player p1;

struct player p2;

p1.y = p2.y = CRT_HEIGHT / 2;

p1.paddle_size = p2.paddle_size = PADDLE_HEIGHT;

p1.score = p2.score = 0;

/* Define horizontal positioning for paddles */

p1.x = 0x00;

p2.x = CRT_WIDTH;

/* Setup the ball (the ball instance is created when "struct ball" is defined) */

ball.dir_x = 2;

/* Ball direction incrementers */

ball.dir_y = 0;

/* (units to move per cycle */

ball.x = CRT_WIDTH / 2;

ball.y = CRT_HEIGHT / 2;

/* Display welcome message */

greet();

/* Main program loop */

while (TRUE)

{

/*

 *

 * Analogue -> digital conversion is done as follows:

 *
- ADC_WR is set, "BUSY" will be set

 *
- Wait for "BUSY" to reset

 *
- Read value from ADC (ADC_RD)

 *

 * Where

 *
"BUSY" is pin 1 or 2 on (for ADC1 or ADC2 respectivly) on the buffer

 *

 */

/* Set players' Y positions from controller readings */

*ADC1_WR;

while ((*BUFFER & 0x01) == 0) ;

p1.y = *ADC1_RD / 2;

/* Correct paddle position if it begins to move offscreen */

if ((p1.y + p1.paddle_size) > CRT_HEIGHT)

p1.y = CRT_HEIGHT - p1.paddle_size;

*ADC2_WR;

while((*BUFFER & 0x02) == 0) ;

p2.y = *ADC2_RD / 2;

if ((p2.y + p2.paddle_size) > CRT_HEIGHT)

p2.y = CRT_HEIGHT - p2.paddle_size;

/* Use player positioning to contribute to the random seed. */

ball.rnd += p1.y + p2.y;

/* Display court markings (top and bottom lines) and each paddle */

draw_lines();

draw_paddle(p1);

draw_paddle(p2);

/* Move ball */

ball.x += ball.dir_x;

ball.y += ball.dir_y;

/*

 * Is the ball heading off the left or right side of the court?

 *

 * If so, check whether it has collided with a paddle, in which case

 * it should bounce back (i.e, x_dir should be reversed).

 *

 * Otherwise, increase the score of the opposing player, and reset the ball's

 * position.

 */

if (ball.x <= 0x02)

{

if (coll_detect(p1, ball) == 1)

{

/* inform ball that it has collided */

collide(&ball);

}

else {

reset_ball(&ball);

p2.score++;

/* Increase player 1's paddle size to bestow advantage */

p1.paddle_size++;

}

}

else if (ball.x >= (CRT_WIDTH - 2))

{

if (coll_detect(p2, ball) == 1)

{

collide(&ball);

} else {

reset_ball(&ball);

p1.score++;

p2.paddle_size++;

}

}

/* Bounce ball vertically if it has collided with the court boundaries */

if ((ball.y <= 0x00) || (ball.y >= CRT_HEIGHT))

ball.dir_y = 0 - ball.dir_y;

draw_ball(ball.x, ball.y);

/*

 * Note about score display:

 * draw_scores()
draws a series of dots at the top of the screen

 * draw_figure()
is a 7-segment display function

 * draw_line()
draws a dividing line between the two scores

 */

draw_scores(p1, p2);

draw_figure(p1.score, CRT_WIDTH / 2 - NUM_WIDTH - 12, CRT_HEIGHT - 32);

draw_line(CRT_WIDTH / 2, CRT_HEIGHT - 32, 0, NUM_HEIGHT);

draw_figure(p2.score, CRT_WIDTH / 2 + 12, CRT_HEIGHT - 32);

}

}

inline collide (struct s_ball *ball)

{

/*

 * Ball has collided with a paddle.

 * Bounce horizontally, and slightly randomize Y direction to add an

 * aspect of chance to the game.

 */

/* Reverse X direction */

ball->dir_x = 0 - ball->dir_x;

/*

 * Use two least significant bits of random seed to alter Y direction,

 * and normalize to ensure abs(Y) < 2.

 */

ball->dir_y += (ball->rnd & 0x01) + (ball->rnd & 0x02) - 1;

if (ball->dir_y > 1)

ball->dir_y = 1;

else if (ball->dir_y < -1)
ball->dir_y = -1;

return;

}

inline reset_ball (struct s_ball *ball)

{

/* Reset ball's position. */

ball->x = CRT_WIDTH / 2;

ball->y = CRT_HEIGHT / 2;

}

inline byte coll_detect(struct player paddle, struct s_ball ball)

{

/*

 * Detect whether a collision has occurred between the ball and the

 * given player. Note that this is ONLY based on Y-positioning; it is assumed

 * that the ball's X position is already equal to that of the paddle.

 */

if (

(ball.y >= paddle.y) &&

(ball.y <= paddle.y + paddle.paddle_size)

)

return 1;

else

return 0;

}

inline draw_ball(byte x, byte y)

{

/*

 * Display ball at given co-ordinates.

 * At present, the "ball" is merely a single pixel.

 */

/* *Z = 0xff; */

*DACX = x;

*DACY = y;

/* *Z = 0x00; */

}

inline draw_lines()

{

/*

 * Display court markings: two horizontal lines at the top and bottom

 * of the screen.

 */

byte x = 0;

/* *Z = 0xff; */

*DACX = 0x00;

*DACY = 0x00;

/* Z = 0x00; */

/* Draw bottom line, right to left */

for (x = 0; x < CRT_WIDTH; x++) *DACX = x;

/* *Z = 0xff; */

/* Leave a 4-pixel gap at the top of the display for score lines */

*DACY = CRT_HEIGHT - 4;

/* *Z = 0x00; */

/* Draw top line, left to right */

for (; x > 0x00; x--) *DACX = x;

}

inline draw_scores(struct player p1, struct player p2)

{

/* Draw dotted lines to indicate scores

 * Ideas:

 * Use i+=2 in the first loop

 * Use i-=2 in the second loop, where i=CRT_WIDTH at first

 * then for both loops you simply plot at i

 * (thus reducing number of calculations in this function by

 * 3+. (and + is quicker than * at any rate))

 */

byte i;

*DACY = CRT_HEIGHT - 1;

for (i = 0; i < p1.score; i++)

*DACX = 2 * i;

for (i = 0; i < p2.score; i++)

*DACX = CRT_WIDTH - (2 * i);

}

inline draw_paddle(struct player paddle)

{

/* *Z = 0xff; */

*DACX = paddle.x;

/* *Z = 0x00; */

byte i;

for (i = paddle.y; i < paddle.y + paddle.paddle_size; i++)

*DACY = i;

}

delay(int noof_delay)

{

/* Pause execution */

volatile int i;

for (i = 0; i < noof_delay; i++) ;

}

inline draw_figure (int num, int sx, int sy)

{

/*

 * 7-segment display subroutine.

 *

 * Takes a character (or digit) to display, and the screen co-ordinates

 * of the BOTTOM LEFT of the character.

 *

 * Since a 7-segment display can be displayed by 2^7 bits, we use a single

 * byte which represents the segments to be displayed. Characters are mapped

 * to their corresponding byte, and each bit is tested and any high bits

 * displayed on-screen.

 *

 * Segment mapping is as follows:

 *

 * 0x40

 * +--------+

 * | |

 * 0x10 | | 0x20

 * | 0x08 |

 * +--------+

 * | |

 * 0x02 | | 0x04

 * | 0x01 |

 * +--------+

 *

 */

byte fig;

/*

 * For efficiency, some useful constants used when displaying segments;

 * digit width, height, and half-height.

 */

int h = NUM_HEIGHT;

int w = NUM_WIDTH;

int hh = h / 2;

switch (num)

{

case 'o':

case 'd':

case 0: fig = 0x77; break;

case 'i':

case 1: fig = 0x24; break;

case 2: fig = 0x6b; break;

case 3: fig = 0x6d; break;

case 4: fig = 0x3c; break;

case 's':

case 5: fig = 0x5d; break;

case 6: fig = 0x5f; break;

case 7: fig = 0x64; break;

case 8: fig = 0x7f; break;

case 9: fig = 0x7c; break;

case 'a': fig = 0x76; break;

case 'b': fig = 0x26; break;

case 'c': fig = 0x53; break;

case 'e': fig = 0x5b; break;

case 'f': fig = 0x5a; break;

case 'g': fig = 0x7d; break;

case 'h': fig = 0x3e; break;

case 'j': fig = 0x25; break;

case 'l': fig = 0x13; break;

case 'n': fig = 0x76; break;

case 'p': fig = 0x7a; break;

default: fig = 0x00; break;

}

/*

 * Shift bits left and sequentially test LSB, drawing each segment

 * as necessary.

 */

if (fig & 0x01)

draw_line(sx, sy, w, 0);

if ((fig >>= 1) & 0x01) draw_line(sx, sy, 0, hh);

if ((fig >>= 1) & 0x01) draw_line(sx + w, sy, 0, hh);

if ((fig >>= 1) & 0x01) draw_line(sx, sy + hh, w, 0);

if ((fig >>= 1) & 0x01) draw_line(sx, sy + hh, 0, hh);

if ((fig >>= 1) & 0x01) draw_line(sx + w, sy + hh, 0, hh);

if ((fig >>= 1) & 0x01) draw_line(sx, sy + h, w, 0);

return;

}

inline draw_line (int x, int y, int w, int h)

{

/*

 * Used by 7-segment display routine.

 * Draw a line of width w, height h, at co-ordinates (x, y)

 */

*DACX = x;

*DACY = y;

byte i;

if (w > 0)

for (i = 0; i < w; i++)

*DACX = x + i;

if (h > 0)

for (i = 0; i < h; i++)

*DACY = y + i;

}

greet ()

{

/*

 * Display greeting message.

 */

byte i;

draw_word("hello");

}

draw_word (char word[])

{

/*

 * Draw a sequence of characters, centred on-screen.

 *

 * Since the SWET libraries do not provide any string handling

 * functions, we must count the letters manually (stored in 'letters')

 *

 * 'divisor' is used to space out the letters appropriately

 */

byte i, j, letters;

for (letters = 0; word[letters] != 0x00; letters++) ;

byte divisor = (letters + 1) * 2;

divisor = CRT_WIDTH / divisor;

for (i = 0; i < 200; i++)

{

for (j = 0; j < letters; j++)

draw_figure(word[j], (divisor * j * 2), CRT_HEIGHT / 2);

}

}

Circuits

Component Details
Patchboard

[image: image9.png]5v Ov

Push

Clock

miﬁn gz?

'

Switches

The two vertical lines in the middle need to be connected to all components (which sit in the columns labelled “components”) to give them power. The blue empty area in the bottom left of the diagram contains the bus pins from the SWET bus, which are not shown for reasons of readability, please see next diagram for the pin layout of the SWET bus as it appears on the patchboard.
SWET bus
The pin layout for the SWET bus as it appears on the lower left portion of the patchboard.
[image: image10.png]PLPPPLPIPEELLEE!
333388338838848

POOODIPIIPLL L
20D0009PPE LS

000000000000000000000000000000

0000000000000000000000
000000000000000000000

Each line of the bus had two pins (represented by two circles joined by a line), A0-15 marked in green is the address portion of the bus, D0-D7 marked in blue is the data part, E, VMA, PBE and R/W marked in red are the control lines for the CPU.
The columns of circles on the left are where the ribbon cable connects to the patchboard.

Address Decoder
[image: image11.png]1C2 7420
IC3 74154

5v

IC3 is out 4-to-16 line decoder, and was used as an address decoder in our project. IC2a is a 4-input NAND gate contained in the IC2 which is a module containing two 4-input NAND gates. IC2a is used to check that the CPU is accessing the patchboard. This is done by ensuring that PBE (PatchBoard Enable), VMA (Valid Memory Address) and E (the SWET system clock) are all enabled at the same time. If ^G1 on IC3 is logic low IC3 will remain in its current state. If ^G1 is logic high IC3 will read and decode the 4 least significant bits (A12-15) of the address bus. Once decoded the appropriate pin will be set active (logical low), these pins are on the lower side of IC3 in the diagram above.
DAC / ADC
[image: image12.png]vee

GND

Pot Output

Analog Input

Analog Output

The Digital-to-Analogue and Analogue-to-Digital components shared a module. It is worth noting that while the diagram shows there to be 20 pins on either side of the module, there are in fact only 19 on the hardware.
D0-7 are the bits of the data bus, and it shared between the ADC and DAC. Vcc is the power voltage, note that the ADC and DAC have separate Vcc pins.
^RD starts the ADC deducing the voltage on its Analogue Input.

^BUSY indicates the status of the ADC

^WR will write the deduced value onto the data bus (D0-7).

Pot Output is used as a pull-up resistance to 5V.

GND is for grounding the module (note the ADC and DAC have separate GND pins)

^Enable will prompt the DAC to read the number on the data bus (D0-7) and apply the appropriate voltage on the Analogue Output pin.
74LS20 Dual 4-input NAND gates
[image: image13.png]

74LS574 Octal D-type edge-triggered Latch
[image: image14.png]

D1-8 are the bits of the data bus.

Q1-8 are the (latched) outputs.

^OE is the Output Enable (active low).

Clock is triggered by a high-to-low logical transition, when triggered the current bits of the data bus are latched into memory, if ^OE is active then Q1-8 will mimic the contents of the data bus at the time of latching.
74LS245 Octal bus transceivers with 3-state outputs
[image: image15.png]20] Vce

fig] OF
fiE] B1

fi7] B2

5] B3
5 B4

14 BS

3 B6

@] [#] [=] (51, [=] [[8] [=]

izl B7

fig

HPFFEIZY Tl

B8

DIR sets the direction (high sets A1-8 as inputs and B1-8 as corresponding outputs, while low does vice versa).
^OE is Output Enable (active low). When output is not enabled, the pins of the selected output are effectively disconnected (neither high nor low) ensuring that they do not interfere with the bus.
74LS154 4 to 16 line decoder
[image: image16.png]o
S<moalf

b1 G1
L7 156
bfi6] 14
b5 13
-] 12

g 11

74

9 4

T Y7 7Y
SN EEEE

fig} <

oc-amTwo

10 il
GND 2|

A, B, C and D are inputs.

1-15 are outputs.

^G1 and ^G2 must both be low for decoding to take place.

Reference for Maintenance (Pin-outs, hardware address lists etc)
Controller Info
Controllers are variable 470Ω resistors. One end is connected to GND, the other is connected to the Analogue in of its particular ADC.
DAC / ADC
[image: image17.png]vee

GND

Pot Output

Analog Input

Analog Output

	Pin
	ADC_1 / DACX
	ADC_2 / DACY

	Vcc (ADC + DAC)
	+5V
	+5V

	D0-D7
	Data Bus
	Data Bus

	GND (ADC + DAC)
	0V
	0V

	^BUSY
	Pin 2 of Buffer
	Pin 3 of Buffer

	^RD
	Pin 1 of Decoder
	Pin 3 of Decoder

	^WR
	Pin 2 of Decoder
	Pin 4 of Decoder

	Pot Output
	Not Connected
	NC

	Analogue In
	Controller 1
	Controller 2

	^Enable
	Pin 6 of Decoder
	Pin 7 of Decoder

	Analogue Out
	X input of display
	Y input of display

74LS20 Dual 4-input NAND gates

	[image: image18.png]

	Pin

Vcc

+5V

GND

0V

1
E of SWET bus
2
PBE of SWET bus
4 & 5
VMA of SWET bus
6
Pin 18 of Decoder
3, 8-13
Not Connected

74LS574 Octal D-type edge-triggered Latch
	[image: image19.png]

	Pin

Vcc

+5V

GND

0V

^OE
+5V
D1
Least Significant Bit of Data Bus (Bit 0)
Q1
Z-Trigger of display
Clock
Pin 8 of Decoder
3-9, 12-19
Not Connected

74LS245 Octal bus transceivers with 3-state outputs

	[image: image20.png]20] Vce

fig] OF
fiE] B1

fi7] B2

5] B3
5 B4

14 BS

3 B6

@] [#] [=] (51, [=] [[8] [=]

izl B7

fig

HPFFEIZY Tl

B8

	Pin

Vcc

+5V

GND

0V

DIR

+5V

^OE

Pin 5 of Decoder

A1

^BUSY of ADC_1

A2

^BUSY of ADC_2

B1

Bit 0 of data Bus

B2

Bit 1 of data bus

4-9, 11-16

Not Connected

74LS154 4 to 16 line decoder

	[image: image21.png]o
S<moalf

b1 G1
L7 156
bfi6] 14
b5 13
-] 12

g 11

74

9 4

T Y7 7Y
SN EEEE

fig} <

oc-amTwo

10 il
GND 2|

	Pin

Vcc

+5V

GND

0V

A
A12 of SWET bus
B
A13 of SWET bus
C
A14 of SWET bus
D
A14 of SWET bus
^G1
Pin 6 of Dual 4-Input NAND gates
^G2

0V

Pin 1

^RD of ADC_1

Pin 2

^WR of ADC_1

Pin 3

^RD of ADC_2

Pin 4

^RD of ADC_3

Pin 5

^OE of Buffer

Pin 6

^Enable of DACX

Pin 7

^Enable of DACY

Pin 8

^OE of Latch

9-11, 13-17

Not Connected

� Pong™: An old game where two opposing paddles can be moved to bounce a ball back and forth on a screen.

� SWET: Super Warwick Electronic Toy, developed at the University of Warwick (UK). The seconds incarnation of the Warwick Electronic Toy – a device which houses a 68008 series CPU (as found in BBC Microcomputers), which when connected to a PC is able to receive and run compiled programs that can act on the CPU’s bus. Used primarily for allowing students to quickly build projects which are CPU controlled.

- 4 -

_1113499077.bin

_1113503669.bin

_1113557762.bin

_1113562096.bin

_1113510093.bin

_1113501308.bin

_1113421402.bin

